Back

1 Load package

list.of.packages <- c("tidyverse","bestNormalize")
new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
if(length(new.packages)) 
  install.packages(new.packages)
lapply(list.of.packages , require, character.only = T)
## [[1]]
## [1] TRUE
## 
## [[2]]
## [1] TRUE
#if(!lapply(pkgs, require, character.only = T)) {
#  install.packages(p)
#  require(bestNormalize)
#}

2 Load phenotype data and extract blood traits with relevant additional columns

pheno <- readxl::read_xlsx(params$data, sheet = "hbss")
names(pheno)
##  [1] "FID"            "IID"            "demographic_id" "encoded_sex"   
##  [5] "GENDER"         "SEX"            "visit_date"     "vAGE"          
##  [9] "AGE"            "STATUS"         "SBP"            "DBP"           
## [13] "HEIGHTcm"       "HEIGHT"         "WEIGHT"         "BMI"           
## [17] "WBC"            "NEUTROPHIL"     "LYMPHOCYTE"     "Hb"            
## [21] "RBC"            "MCV"            "MCH"            "MCHC"          
## [25] "RDW"            "PLATELET"       "RETICULOCYTE"   "CREATININE"    
## [29] "LDH"            "EOSINOPHIL"     "MONOCYTE"       "BASOPHIL"      
## [33] "MPV"            "HCT"            "HbF"            "HbA"           
## [37] "HbA2"           "HbS"
write.table(pheno, sub(".xlsx", ".tsv", params$data), col.names = TRUE, row.names = FALSE, sep="\t", quote = FALSE) 
pheno <- read.table( sub(".xlsx", ".tsv", params$data), sep="\t", header = TRUE)
keep_colmns <- c(
  "FID","IID","AGE","SEX","GENDER","HEIGHT","WEIGHT","BMI","SBP","DBP",
  "STATUS","HbA","HbA2","HbF","HbS",
  "RBC","Hb","MCV","HCT","MCHC","MCH","WBC","RDW",
  "LYMPHOCYTE","MONOCYTE","NEUTROPHIL",
  "EOSINOPHIL","BASOPHIL","PLATELET","RETICULOCYTE"
)

bt_pheno <- pheno[, which(names(pheno) %in% keep_colmns)]
bt_pheno$AGE <- as.numeric(bt_pheno$AGE)
bt_pheno$SBP <- as.numeric(bt_pheno$SBP)
bt_pheno$DBP <- as.numeric(bt_pheno$DBP)
bt_pheno$EOSINOPHIL <- as.numeric(bt_pheno$EOSINOPHIL)
bt_pheno$MONOCYTE <- as.numeric(bt_pheno$MONOCYTE)
bt_pheno$BMI <- (bt_pheno$WEIGHT)/(bt_pheno$HEIGHT)^2

3 Demographic data

3.1 AGE

summary(bt_pheno$AGE)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   5.021   8.039  11.234  13.395  16.235  44.201
hist(bt_pheno$AGE, main="AGE destribution", xlab="AGE")

#plot(density(na.omit(bt_pheno$AGE)))
#polygon(density(na.omit(bt_pheno$AGE)), col = "coral")
#abline(v=c(min(bt_pheno$AGE), max(bt_pheno$AGE)), lty=2, lwd=1)

3.2 SEX

bt_pheno %>% 
   select(SEX) %>% 
   table() %>% 
   as.data.frame() %>% 
   na.omit() %>%
   mutate(Prop = (Freq/sum(Freq))*100) -> sex       # Sex

sex
colnames(sex) <- c("cat", "freq", "prop")
par(mar=c(4,4,3,4))
barplot(
   sex$prop, 
   ylim=c(0, 60), 
   col=c(2,4)
)
text(
   x=c(0.7,1.9), 
   y=30, 
   labels=c("Female", "Male")
)
mtext(
   text = "Proportion (%)",
   side = 2,
   line = 3
)
mtext(
   text = "Sex",
   side = 1,
   line = 1
)

4 Describe phenotypes and normalize if needed

Definition of outliers removed:

  • Very extreme values that are likely to be experimentation or data capture error.

4.1 RBC

# figures-side,
par(mar = c(4, 4, 2, 2))
hist(bt_pheno$RBC, main="RBC (million/uL)") 
plot(density(na.omit(bt_pheno$RBC)), main="RBC (million/uL)")
polygon(density(na.omit(bt_pheno$RBC)), col = "coral") 

# removing outliers
abline(v=40, lwd=1, lty=2)
bt_pheno$RBC <- as.numeric(ifelse(bt_pheno$RBC > 40, "NA", bt_pheno$RBC))
## Warning: NAs introduced by coercion
plot(density(na.omit(bt_pheno$RBC)), main="RBC (>40) outlier pruned")
polygon(density(na.omit(bt_pheno$RBC)), col = "coral")

BNphen <- bestNormalize::orderNorm(bt_pheno$RBC)
## Warning in bestNormalize::orderNorm(bt_pheno$RBC): Ties in data, Normal distribution not guaranteed
BNphen 
## orderNorm Transformation with 778 nonmissing obs and ties
##  - 257 unique values 
##  - Original quantiles:
##    0%   25%   50%   75%  100% 
##  0.90  2.38  2.80  3.19 13.90
bt_pheno$nRBC <- BNphen$x.t
plot(density(na.omit(bt_pheno$nRBC)), main="Normalized RBC") 
polygon(density(na.omit(bt_pheno$nRBC)), col = "lightblue")

# fit smooth spline for Age against RBC
rbc_pheno <- na.omit(bt_pheno[, which(names(bt_pheno) %in% c("FID","GENDER","AGE","RBC"))])

rbc_plot <- qplot(AGE, RBC, data = rbc_pheno, geom='smooth', span =0.5, color = GENDER) + theme_bw()
## Warning: `qplot()` was deprecated in ggplot2 3.4.0.
## This warning is displayed once per session.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
rbc_plot
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
summary(bt_pheno$RBC)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   0.900   2.380   2.800   2.856   3.190  13.900      79

4.2 RDW

# figures-side,
par(mar = c(4, 4, 2, 2))
hist(bt_pheno$RDW, main="RDW") 
plot(density(na.omit(bt_pheno$RDW)), main="RDW")
polygon(density(na.omit(bt_pheno$RDW)), col = "coral") 

# removing outliers
#abline(v=10, lwd=1, lty=2)
#bt_pheno$RDW <- as.numeric(ifelse(bt_pheno$RDW > 10, "NA", bt_pheno$RDW))
#plot(density(na.omit(bt_pheno$RDW)), main="RDW (>10) outlier pruned")
#polygon(density(na.omit(bt_pheno$RDW)), col = "coral")

BNphen <- bestNormalize::orderNorm(bt_pheno$RDW)
## Warning in bestNormalize::orderNorm(bt_pheno$RDW): Ties in data, Normal distribution not guaranteed
BNphen 
## orderNorm Transformation with 779 nonmissing obs and ties
##  - 181 unique values 
##  - Original quantiles:
##   0%  25%  50%  75% 100% 
## 13.4 19.7 22.5 25.5 47.9
bt_pheno$nRDW <- BNphen$x.t
plot(density(na.omit(bt_pheno$nRDW)), main="Normalized RDW") 
polygon(density(na.omit(bt_pheno$nRDW)), col = "lightblue")

# fit smooth spline for Age against RBC
rdw_pheno <- na.omit(bt_pheno[, which(names(bt_pheno) %in% c("FID","GENDER","AGE","RDW"))])

rdw_plot <- qplot(AGE, RDW, data = rdw_pheno, geom='smooth', span =0.5, color = GENDER) + theme_bw()
rdw_plot
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
summary(bt_pheno$RDW)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   13.40   19.70   22.50   22.98   25.50   47.90      78

4.3 Hb

par(mar = c(4, 4, 2, 2))
hist(bt_pheno$Hb, main="Hb (g/dL)", xlab="Hb") 
plot(density(na.omit(bt_pheno$Hb)), main="Hb (g/dL)")
polygon(density(na.omit(bt_pheno$Hb)), col = "coral")

# removing outliers
#abline(v=13, lwd=1, lty=2)
#bt_pheno$Hb <- as.numeric(ifelse(bt_pheno$Hb > 13, "NA", bt_pheno$Hb))
#plot(density(na.omit(bt_pheno$Hb)), main="Hb (>13) outlier pruned")
#polygon(density(na.omit(bt_pheno$Hb)), col = "coral")

BNphen <- bestNormalize::orderNorm(bt_pheno$Hb)
## Warning in bestNormalize::orderNorm(bt_pheno$Hb): Ties in data, Normal distribution not guaranteed
BNphen 
## orderNorm Transformation with 783 nonmissing obs and ties
##  - 317 unique values 
##  - Original quantiles:
##    0%   25%   50%   75%  100% 
##  2.20  6.72  7.50  8.36 11.80
bt_pheno$nHb <- BNphen$x.t
plot(density(na.omit(bt_pheno$nHb)), main="Normalized Hb") 
polygon(density(na.omit(bt_pheno$nHb)), col = "lightblue")

# fit smooth spline for Age against Hb
hb_pheno <- na.omit(bt_pheno[, which(names(bt_pheno) %in% c("FID","GENDER","AGE","Hb"))])

hb_plot <- qplot(AGE, Hb, data = hb_pheno, geom='smooth', span =0.5, color = GENDER) + theme_bw()
hb_plot
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
summary(bt_pheno$Hb)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   2.200   6.720   7.500   7.473   8.360  11.800      74

4.4 HbF

par(mar = c(4, 4, 2, 2))
hist(bt_pheno$HbF, main="HbF (%)", xlab="HbF") 
plot(density(na.omit(bt_pheno$HbF)), main="HbF")
polygon(density(na.omit(bt_pheno$HbF)), col = "coral")

# removing outliers
abline(v=0, lwd=1, lty=2)
bt_pheno$HbF <- as.numeric(ifelse(bt_pheno$HbF == 0, "NA", bt_pheno$HbF))
plot(density(na.omit(bt_pheno$HbF)), main="HbF (0) outlier pruned")
polygon(density(na.omit(bt_pheno$HbF)), col = "coral")

BNphen <- bestNormalize::orderNorm(bt_pheno$HbF)
BNphen 
## orderNorm Transformation with 857 nonmissing obs and ties
##  - 162 unique values 
##  - Original quantiles:
##   0%  25%  50%  75% 100% 
##  0.2  2.6  4.7  7.7 28.0
bt_pheno$onHbF <- BNphen$x.t
plot(density(na.omit(bt_pheno$onHbF)), main="Normalized HbF") 
polygon(density(na.omit(bt_pheno$onHbF)), col = "lightblue")

# CUBIC ROOT TRANSFORMATION
bt_pheno$nHbF <- (bt_pheno$HbF)^(1/3)
plot(density(na.omit(bt_pheno$nHbF)), main="Cubic root transformed HbF") 
polygon(density(na.omit(bt_pheno$nHbF)), col = "lightblue")

# fit smooth spline for Age against Hb
HbF_pheno <- na.omit(bt_pheno[, which(names(bt_pheno) %in% c("FID","GENDER","AGE","HbF"))])

HbF_plot <- qplot(AGE, HbF, data = HbF_pheno, geom='smooth', span =0.5, color = GENDER) + theme_bw()
HbF_plot
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
summary(bt_pheno$HbF)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.200   2.600   4.700   5.657   7.700  28.000

4.5 MCV

par(mar = c(4, 4, 2, 2))
hist(pheno$MCV, main="MCV (fL)") 
plot(density(na.omit(bt_pheno$MCV)), main="MCV (fL)")
polygon(density(na.omit(bt_pheno$MCV)), col = "coral")

# removing outliers
abline(v=10, lwd=1, lty=2)
bt_pheno$MCV <- as.numeric(ifelse(bt_pheno$MCV < 10, "NA", bt_pheno$MCV))
## Warning: NAs introduced by coercion
plot(density(na.omit(bt_pheno$MCV)), main="MCV (<10) outlier pruned")
polygon(density(na.omit(bt_pheno$MCV)), col = "coral")

BNphen <- bestNormalize::orderNorm(bt_pheno$MCV)
## Warning in bestNormalize::orderNorm(bt_pheno$MCV): Ties in data, Normal distribution not guaranteed
BNphen 
## orderNorm Transformation with 781 nonmissing obs and ties
##  - 274 unique values 
##  - Original quantiles:
##    0%   25%   50%   75%  100% 
##  20.3  75.3  81.3  87.0 110.0
bt_pheno$nMCV <- BNphen$x.t
plot(density(na.omit(bt_pheno$nMCV)), main="Normalized (orderNorm) MCV")
polygon(density(na.omit(bt_pheno$nMCV)), col = "lightblue")

# fit smooth spline for Age against Hb
mcv_pheno <- na.omit(bt_pheno[, which(names(bt_pheno) %in% c("FID","GENDER","AGE","MCV"))])

mcv_plot <- qplot(AGE, MCV, data = mcv_pheno, geom='smooth', span =0.5, color = GENDER) + theme_bw()
mcv_plot
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
summary(bt_pheno$MCV)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   20.30   75.30   81.30   81.03   87.00  110.00      76

4.6 HCT

par(mar = c(4, 4, 2, 2))
hist(bt_pheno$HCT, main="HCT") 
plot(density(na.omit(bt_pheno$HCT)), main="HCT")
polygon(density(na.omit(bt_pheno$HCT)), col = "coral")

# removing ourliers
#abline(v=43, lwd=1, lty=2)
#bt_pheno$HCT <- as.numeric(ifelse(bt_pheno$HCT > 43, "NA", bt_pheno$HCT))
#plot(density(na.omit(bt_pheno$HCT)), main="HCT (>43) outlier pruned")
#polygon(density(na.omit(bt_pheno$HCT)), col = "coral")

BNphen <- bestNormalize::orderNorm(bt_pheno$HCT)
## Warning in bestNormalize::orderNorm(bt_pheno$HCT): Ties in data, Normal distribution not guaranteed
BNphen 
## orderNorm Transformation with 773 nonmissing obs and ties
##  - 187 unique values 
##  - Original quantiles:
##   0%  25%  50%  75% 100% 
##  7.6 20.0 22.5 25.0 39.5
bt_pheno$nHCT <- BNphen$x.t
plot(density(na.omit(bt_pheno$nHCT)), main="Normalized HCT") 
polygon(density(na.omit(bt_pheno$nHCT)), col = "lightblue")

# fit smooth spline for Age against Hb
htc_pheno <- na.omit(bt_pheno[, which(names(bt_pheno) %in% c("FID","GENDER","AGE","HCT"))])

htc_plot <- qplot(AGE, HCT, data = htc_pheno, geom='smooth', span =0.5, color = GENDER) + theme_bw()
htc_plot
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
summary(bt_pheno$HCT)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    7.60   20.00   22.50   22.54   25.00   39.50      84

4.7 MCHC

#Mean Corpuscular Hemoglobin Concentration

par(mar = c(4, 4, 2, 2))
hist(bt_pheno$MCHC, main="MCHC (g/dL)") 
plot(density(na.omit(bt_pheno$MCHC)), main="MCHC (g/dL)")
polygon(density(na.omit(bt_pheno$MCHC)), col = "coral")

# removing
abline(v=c(10, 60), lwd=1, lty=2)
bt_pheno$MCHC <- as.numeric(
  ifelse(bt_pheno$MCHC > 60, "NA", 
    #bt_pheno$MCHC
    ifelse(bt_pheno$MCHC < 10, "NA", bt_pheno$MCHC)
  )
)
## Warning: NAs introduced by coercion
plot(density(na.omit(bt_pheno$MCHC)), main="MCHC (>60 and <10) outlier pruned")
polygon(density(na.omit(bt_pheno$MCHC)), col = "coral")

BNphen <- bestNormalize::orderNorm(bt_pheno$MCHC)
## Warning in bestNormalize::orderNorm(bt_pheno$MCHC): Ties in data, Normal distribution not guaranteed
BNphen 
## orderNorm Transformation with 778 nonmissing obs and ties
##  - 99 unique values 
##  - Original quantiles:
##   0%  25%  50%  75% 100% 
## 24.4 31.9 33.3 34.5 51.1
bt_pheno$nMCHC <- BNphen$x.t
plot(density(na.omit(bt_pheno$nMCHC)), main="Normalized MCHC") 
polygon(density(na.omit(bt_pheno$nMCHC)), col = "lightblue")

# fit smooth spline for Age against Hb
mchc_pheno <- na.omit(bt_pheno[, which(names(bt_pheno) %in% c("FID","GENDER","AGE","MCHC"))])

mchc_plot <- qplot(AGE, MCHC, data = mchc_pheno, geom='smooth', span =0.5, color = GENDER) + theme_bw()
mchc_plot
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
summary(bt_pheno$MCHC)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   24.40   31.90   33.30   33.21   34.50   51.10      79

4.8 MCH

#The Mean Corpuscular Hemoglobin

par(mar = c(4, 4, 2, 2))
hist(bt_pheno$MCH, main="MCH (pg/cell)") 
plot(density(na.omit(bt_pheno$MCH)), main="MCH (pg/cell)")
polygon(density(na.omit(bt_pheno$MCH)), col = "coral")

# removing outliers
# abline(v=c(10, 50), lwd=1, lty=2)
# bt_pheno$MCH <- as.numeric(
#   ifelse(bt_pheno$MCH < 10, "NA", 
#     #bt_pheno$MCH
#     ifelse(bt_pheno$MCH > 50, "NA", bt_pheno$MCH)
#   )
# )
# 
# plot(density(na.omit(bt_pheno$MCH)), main="MCH (<10 and >50) outlier pruned")
# polygon(density(na.omit(bt_pheno$MCH)), col = "coral")

BNphen <- bestNormalize::orderNorm(bt_pheno$MCH)
## Warning in bestNormalize::orderNorm(bt_pheno$MCH): Ties in data, Normal distribution not guaranteed
BNphen 
## orderNorm Transformation with 765 nonmissing obs and ties
##  - 165 unique values 
##  - Original quantiles:
##    0%   25%   50%   75%  100% 
##  4.01 24.70 27.10 29.40 54.70
bt_pheno$nMCH <- BNphen$x.t
plot(density(na.omit(bt_pheno$nMCH)), main="Normalized MCH") 
polygon(density(na.omit(bt_pheno$nMCH)), col = "lightblue")

# fit smooth spline for Age against Hb
MCH_pheno <- na.omit(bt_pheno[, which(names(bt_pheno) %in% c("FID","GENDER","AGE","MCH"))])

MCH_plot <- qplot(AGE, MCH, data = MCH_pheno, geom='smooth', span =0.5, color = GENDER) + theme_bw()
MCH_plot
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
summary(bt_pheno$MCH)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    4.01   24.70   27.10   27.05   29.40   54.70      92

4.9 WBC

par(mar = c(4, 4, 2, 2))
hist(bt_pheno$WBC, main="WBC (x10^9 cells/L)") 
plot(density(na.omit(bt_pheno$WBC)), main="WBC (x10^9 cells/L)")
polygon(density(na.omit(bt_pheno$WBC)), col = "coral")

# removing
#abline(v=35, lwd=1, lty=2)
#bt_pheno$WBC <- as.numeric(
#  ifelse(bt_pheno$WBC > 35, "NA", 
#    bt_pheno$WBC
#    #ifelse(bt_pheno$WBC < 10, "NA", bt_pheno$WBC)
#  )
#)

plot(density(na.omit(bt_pheno$WBC)), main="WBC (>35) outlier pruned")
polygon(density(na.omit(bt_pheno$WBC)), col = "coral")

BNphen <- bestNormalize::orderNorm(bt_pheno$WBC)
## Warning in bestNormalize::orderNorm(bt_pheno$WBC): Ties in data, Normal distribution not guaranteed
BNphen 
## orderNorm Transformation with 793 nonmissing obs and ties
##  - 290 unique values 
##  - Original quantiles:
##    0%   25%   50%   75%  100% 
##  3.43 11.50 14.40 18.20 59.70
bt_pheno$nWBC <- BNphen$x.t
plot(density(na.omit(bt_pheno$nWBC)), main="Normalized WBC") 
polygon(density(na.omit(bt_pheno$nWBC)), col = "lightblue")

# fit smooth spline for Age against Hb
wbc_pheno <- na.omit(bt_pheno[, which(names(bt_pheno) %in% c("FID","GENDER","AGE","WBC"))])

wbc_plot <- qplot(AGE, WBC, data = wbc_pheno, geom='smooth', span =0.5, color = GENDER) + theme_bw()
wbc_plot
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
summary(bt_pheno$WBC)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    3.43   11.50   14.40   15.70   18.20   59.70      64

4.10 LYMPHOCYTE

par(mar = c(4, 4, 2, 2))
hist(bt_pheno$LYMPHOCYTE, main="LYMPHOCYTE (x10^9 cells/L)") 
plot(density(na.omit(bt_pheno$LYMPHOCYTE)), main="LYMPHOCYTE (x10^9 cells/L)")
polygon(density(na.omit(bt_pheno$LYMPHOCYTE)), col = "coral") 

BNphen <- bestNormalize::orderNorm(bt_pheno$LYMPHOCYTE)
## Warning in bestNormalize::orderNorm(bt_pheno$LYMPHOCYTE): Ties in data, Normal distribution not guaranteed
BNphen 
## orderNorm Transformation with 795 nonmissing obs and ties
##  - 523 unique values 
##  - Original quantiles:
##    0%   25%   50%   75%  100% 
##  2.22 34.90 42.90 51.35 89.40
bt_pheno$nLYMPHOCYTE <- BNphen$x.t
plot(density(na.omit(bt_pheno$nLYMPHOCYTE)), main="Normalized LYMPHOCYTE") 
polygon(density(na.omit(bt_pheno$nLYMPHOCYTE)), col = "lightblue")

# fit smooth spline for Age against Hb
lym_pheno <- na.omit(bt_pheno[, which(names(bt_pheno) %in% c("FID","GENDER","AGE","LYMPHOCYTE"))])

lym_plot <- qplot(AGE, LYMPHOCYTE, data = lym_pheno, geom='smooth', span =0.5, color = GENDER) + theme_bw()
lym_plot
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
summary(bt_pheno$LYMPHOCYTE)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    2.22   34.90   42.90   42.06   51.35   89.40      62

4.11 MONOCYTE

par(mar = c(4, 4, 2, 2))
hist(bt_pheno$MONOCYTE, main="MONOCYTE (x10^9 cells/L)") 
plot(density(na.omit(bt_pheno$MONOCYTE)), main="MONOCYTE (x10^9 cells/L)")
polygon(density(na.omit(bt_pheno$MONOCYTE)), col = "coral")

# removing
#abline(v=5, lwd=1, lty=2)
#bt_pheno$MONOCYTE <- as.numeric(
#  ifelse(bt_pheno$MONOCYTE > 5, "NA", 
#    bt_pheno$MONOCYTE
#    #ifelse(bt_pheno$MONOCYTE == 0, "NA", bt_pheno$MONOCYTE)
#  )
#)

plot(density(na.omit(bt_pheno$MONOCYTE)), main="MONOCYTE (>5) outlier pruned")
polygon(density(na.omit(bt_pheno$MONOCYTE)), col = "coral")

BNphen <- bestNormalize::orderNorm(bt_pheno$MONOCYTE)
## Warning in bestNormalize::orderNorm(bt_pheno$MONOCYTE): Ties in data, Normal distribution not guaranteed
BNphen 
## orderNorm Transformation with 776 nonmissing obs and ties
##  - 25 unique values 
##  - Original quantiles:
##   0%  25%  50%  75% 100% 
##    1    4    6    8   46
bt_pheno$nMONOCYTE <- BNphen$x.t
plot(density(na.omit(bt_pheno$nMONOCYTE)), main="Normalized MONOCYTE") 
polygon(density(na.omit(bt_pheno$nMONOCYTE)), col = "lightblue")

# fit smooth spline for Age against Hb
mon_pheno <- na.omit(bt_pheno[, which(names(bt_pheno) %in% c("FID","GENDER","AGE","MONOCYTE"))])

mon_plot <- qplot(AGE, MONOCYTE, data = mon_pheno, geom='smooth', span =0.5, color = GENDER) + theme_bw()
mon_plot
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
summary(bt_pheno$MONOCYTE)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   1.000   4.000   6.000   6.416   8.000  46.000      81

4.12 NEUTROPHIL

par(mar = c(4, 4, 2, 2))
hist(bt_pheno$NEUTROPHIL, main="NEUTROPHIL (g/L)") 
plot(density(na.omit(bt_pheno$NEUTROPHIL)), main="NEUTROPHIL (g/L)")
polygon(density(na.omit(bt_pheno$NEUTROPHIL)), col = "coral")

# removing
#abline(v=20, lwd=1, lty=2)
#bt_pheno$NEUTROPHIL <- as.numeric(
#  ifelse(bt_pheno$NEUTROPHIL > 20, "NA", 
#    bt_pheno$NEUTROPHIL
#    #ifelse(bt_pheno$NEUTROPHIL < 10, "NA", bt_pheno$NEUTROPHIL)
#  )
#)

plot(density(na.omit(bt_pheno$NEUTROPHIL)), main="NEUTROPHIL (>20) outlier pruned")
polygon(density(na.omit(bt_pheno$NEUTROPHIL)), col = "coral")

BNphen <- bestNormalize::orderNorm(bt_pheno$NEUTROPHIL)
## Warning in bestNormalize::orderNorm(bt_pheno$NEUTROPHIL): Ties in data, Normal distribution not guaranteed
BNphen 
## orderNorm Transformation with 716 nonmissing obs and ties
##  - 478 unique values 
##  - Original quantiles:
##     0%    25%    50%    75%   100% 
##  2.300 34.400 41.950 49.725 90.100
bt_pheno$nNEUTROPHIL <- BNphen$x.t
plot(density(na.omit(bt_pheno$nNEUTROPHIL)), main="Normalized NEUTROPHIL") 
polygon(density(na.omit(bt_pheno$nNEUTROPHIL)), col = "lightblue")

# fit smooth spline for Age against NEUTROPHIL
neu_pheno <- na.omit(bt_pheno[, which(names(bt_pheno) %in% c("FID","GENDER","AGE","NEUTROPHIL"))])

neu_plot <- qplot(AGE, NEUTROPHIL, data = neu_pheno, geom='smooth', span =0.5, color = GENDER) + theme_bw()
neu_plot
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
summary(bt_pheno$NEUTROPHIL)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    2.30   34.40   41.95   41.40   49.73   90.10     141

4.13 EOSINOPHIL

par(mar = c(4, 4, 2, 2))
hist(bt_pheno$EOSINOPHIL, main="EOSINOPHIL (x10^9 cells/L)") 
plot(density(na.omit(bt_pheno$EOSINOPHIL)), main="EOSINOPHIL (x10^9 cells/L)")
polygon(density(na.omit(bt_pheno$EOSINOPHIL)), col = "coral")

# removing
#abline(v=2, lwd=1, lty=2)
#bt_pheno$EOSINOPHIL <- as.numeric(
#  ifelse(bt_pheno$EOSINOPHIL > 2, "NA", 
#    bt_pheno$EOSINOPHIL
#    #ifelse(bt_pheno$EOSINOPHIL < 10, "NA", bt_pheno$EOSINOPHIL)
#  )
#)

plot(density(na.omit(bt_pheno$EOSINOPHIL)), main="EOSINOPHIL (>2) outlier pruned")
polygon(density(na.omit(bt_pheno$EOSINOPHIL)), col = "coral")

BNphen <- bestNormalize(bt_pheno$EOSINOPHIL)
BNphen 
## Best Normalizing transformation with 815 Observations
##  Estimated Normality Statistics (Pearson P / df, lower => more normal):
##  - arcsinh(x): 7.2672
##  - Center+scale: 7.2766
##  - Double Reversed Log_b(x+a): 7.8185
##  - Exp(x): 92.6634
##  - Log_b(x+a): 14.441
##  - orderNorm (ORQ): 7.1458
##  - sqrt(x + a): 6.9607
##  - Yeo-Johnson: 7.2511
## Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
##  
## Based off these, bestNormalize chose:
## Standardized sqrt(x + a) Transformation with 815 nonmissing obs.:
##  Relevant statistics:
##  - a = 0 
##  - mean (before standardization) = 1.544998 
##  - sd (before standardization) = 1.017404
bt_pheno$nEOSINOPHIL <- BNphen$x.t

plot(density(na.omit(bt_pheno$nEOSINOPHIL)), main="Normalized EOSINOPHIL") 
polygon(density(na.omit(bt_pheno$nEOSINOPHIL)), col = "lightblue")

# fit smooth spline for Age against EOSINOPHIL
eu_pheno <- na.omit(bt_pheno[, which(names(bt_pheno) %in% c("FID","GENDER","AGE","EOSINOPHIL"))])

eu_plot <- qplot(AGE, EOSINOPHIL, data = eu_pheno, geom='smooth', span =0.5, color = GENDER) + theme_bw()
eu_plot
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
summary(bt_pheno$EOSINOPHIL)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   0.000   1.000   2.000   3.421   5.000  40.000      42

4.14 BASOPHIL

par(mar = c(4, 4, 2, 2))
hist(bt_pheno$BASOPHIL, main="BASOPHIL") 
plot(density(na.omit(bt_pheno$BASOPHIL)), main="BASOPHIL")
polygon(density(na.omit(bt_pheno$BASOPHIL)), col = "coral")

# removing
#abline(v=1, lwd=1, lty=2)
#bt_pheno$BASOPHIL <- as.numeric(
#  ifelse(bt_pheno$BASOPHIL > 1, "NA", 
#    bt_pheno$BASOPHIL
#    #ifelse(bt_pheno$BASOPHIL < 10, "NA", bt_pheno$BASOPHIL)
#  )
#)

plot(density(na.omit(bt_pheno$BASOPHIL)), main="BASOPHIL (>1) outlier pruned")
polygon(density(na.omit(bt_pheno$BASOPHIL)), col = "coral")

# binarize basophil after removing outliers (1-control, 2-case)
# manual (10.1016/j.ajhg.2021.08.007)
bt_pheno$bBASOPHIL <- as.numeric(
  ifelse(bt_pheno$BASOPHIL < 0.05, 1, 
    #bt_pheno$BASOPHIL
    ifelse(bt_pheno$BASOPHIL >= 0.05, 2, "NA")
  )
)

bt_pheno$cBASOPHIL <- as.numeric(
  ifelse(bt_pheno$BASOPHIL < 0.05, 0, 
    #bt_pheno$BASOPHIL
    ifelse(bt_pheno$BASOPHIL >= 0.05, 1, "NA")
  )
)

hist(bt_pheno$bBASOPHIL, main="binarized")

# fit smooth spline for Age against BASOPHIL
bas_pheno <- na.omit(bt_pheno[, which(names(bt_pheno) %in% c("FID","GENDER","AGE","BASOPHIL"))])

bas_plot <- qplot(AGE, BASOPHIL, data = bas_pheno, geom='smooth', span =0.5, color = GENDER) + theme_bw()
bas_plot
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
summary(bt_pheno$BASOPHIL)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##  0.0000  0.6667  1.0395  1.5438  1.5117 82.0000      45

4.15 PLATELET

par(mar = c(4, 4, 2, 2))
hist(bt_pheno$PLATELET, main="PLATELET (x10^9/L)") 
plot(density(na.omit(bt_pheno$PLATELET)), main="PLATELET (x10^9/L)")
polygon(density(na.omit(bt_pheno$PLATELET)), col = "coral") 
BNphen <- bestNormalize::orderNorm(bt_pheno$PLATELET)
## Warning in bestNormalize::orderNorm(bt_pheno$PLATELET): Ties in data, Normal distribution not guaranteed
BNphen 
## orderNorm Transformation with 783 nonmissing obs and ties
##  - 468 unique values 
##  - Original quantiles:
##       0%      25%      50%      75%     100% 
##    0.733  337.500  441.000  559.500 1355.000
bt_pheno$nPLATELET <- BNphen$x.t
plot(density(na.omit(bt_pheno$nPLATELET)), main="Normalized PLATELET") 
polygon(density(na.omit(bt_pheno$nPLATELET)), col = "lightblue")

# fit smooth spline for Age against PLATELET
pla_pheno <- na.omit(bt_pheno[, which(names(bt_pheno) %in% c("FID","GENDER","AGE","PLATELET"))])

pla_plot <- qplot(AGE, PLATELET, data = pla_pheno, geom='smooth', span =0.5, color = GENDER) + theme_bw()
pla_plot
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
summary(bt_pheno$PLATELET)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max.     NA's 
##    0.733  337.500  441.000  450.752  559.500 1355.000       74

4.16 RETICULOCYTE

# RETICULOCYTE PER  /uL

par(mar = c(4, 4, 2, 2))
hist(bt_pheno$RETICULOCYTE, main="RETICULOCYTE (units/uL)") 
plot(density(na.omit(bt_pheno$RETICULOCYTE)), main="RETICULOCYTE")
polygon(density(na.omit(bt_pheno$RETICULOCYTE)), col = "coral") 

# removing
abline(v=60, lwd=1, lty=2)
bt_pheno$RETICULOCYTE <- as.numeric(
  ifelse(bt_pheno$RETICULOCYTE > 60, "NA", 
    bt_pheno$RETICULOCYTE
    #ifelse(bt_pheno$RETICULOCYTE < 10, "NA", bt_pheno$RETICULOCYTE)
  )
)
## Warning: NAs introduced by coercion
plot(density(na.omit(bt_pheno$RETICULOCYTE)), main="RETICULOCYTE (>60) outlier pruned")
polygon(density(na.omit(bt_pheno$RETICULOCYTE)), col = "coral")

BNphen <- bestNormalize::orderNorm(bt_pheno$RETICULOCYTE)
## Warning in bestNormalize::orderNorm(bt_pheno$RETICULOCYTE): Ties in data, Normal distribution not guaranteed
BNphen 
## orderNorm Transformation with 441 nonmissing obs and ties
##  - 176 unique values 
##  - Original quantiles:
##    0%   25%   50%   75%  100% 
##  0.00  5.60 10.10 14.65 38.10
bt_pheno$nRETICULOCYTE <- BNphen$x.t
plot(density(na.omit(bt_pheno$nRETICULOCYTE)), main="Normalized RETICULOCYTE") 
polygon(density(na.omit(bt_pheno$nRETICULOCYTE)), col = "lightblue")

# fit smooth spline for Age against PLATELET
ret_pheno <- na.omit(bt_pheno[, which(names(bt_pheno) %in% c("FID","GENDER","AGE","RETICULOCYTE"))])

ret_plot <- qplot(AGE, RETICULOCYTE, data = ret_pheno, geom='smooth', span =0.5, color = GENDER) + theme_bw()
ret_plot
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
summary(bt_pheno$RETICULOCYTE)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    0.00    5.60   10.10   10.60   14.65   38.10     416

4.17 SBP

par(mar = c(4, 4, 2, 2))
hist(bt_pheno$SBP, main="SBP") 
plot(density(na.omit(bt_pheno$SBP)), main="SBP")
polygon(density(na.omit(bt_pheno$SBP)), col = "coral")

BNphen <- bestNormalize::orderNorm(bt_pheno$SBP)
BNphen 
## orderNorm Transformation with 648 nonmissing obs and ties
##  - 87 unique values 
##  - Original quantiles:
##    0%   25%   50%   75%  100% 
##  20.0  97.0 105.5 117.0 168.0
bt_pheno$nSBP <- BNphen$x.t
plot(density(na.omit(bt_pheno$nSBP)), main="Normalized SBP") 
polygon(density(na.omit(bt_pheno$nSBP)), col = "lightblue")

# fit smooth spline for Age against RETICS
sbp_pheno <- na.omit(bt_pheno[, which(names(bt_pheno) %in% c("FID","GENDER","AGE","SBP"))])

sbp_plot <- qplot(AGE, SBP, data = sbp_pheno, geom='smooth', span =0.5, color = GENDER) + theme_bw()
sbp_plot
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
summary(bt_pheno$SBP)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    20.0    97.0   105.5   106.6   117.0   168.0     209

4.18 DBP

par(mar = c(4, 4, 2, 2))
hist(bt_pheno$DBP, main="DBP") 
plot(density(na.omit(bt_pheno$DBP)), main="DBP")
polygon(density(na.omit(bt_pheno$DBP)), col = "coral")

BNphen <- bestNormalize::orderNorm(bt_pheno$DBP)
BNphen 
## orderNorm Transformation with 647 nonmissing obs and ties
##  - 72 unique values 
##  - Original quantiles:
##   0%  25%  50%  75% 100% 
##   20   58   65   73  109
bt_pheno$nDBP <- BNphen$x.t
plot(density(na.omit(bt_pheno$nDBP)), main="Normalized DBP") 
polygon(density(na.omit(bt_pheno$nDBP)), col = "lightblue")

# fit smooth spline for Age against DBP
dbp_pheno <- na.omit(bt_pheno[, which(names(bt_pheno) %in% c("FID","GENDER","AGE","DBP"))])

dbp_plot <- qplot(AGE, DBP, data = dbp_pheno, geom='smooth', span =0.5, color = GENDER) + theme_bw()
dbp_plot
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
summary(bt_pheno$DBP)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    20.0    58.0    65.0    65.3    73.0   109.0     210

4.19 BMI

par(mar = c(4, 4, 2, 2))
hist(bt_pheno$BMI, main="BMI") 
plot(density(na.omit(bt_pheno$BMI)), main="BMI")
polygon(density(na.omit(bt_pheno$BMI)), col = "coral")

# removing outliers
abline(v=40, lwd=1, lty=2)
bt_pheno$BMI <- as.numeric(
  ifelse(bt_pheno$BMI > 40, "NA", 
    bt_pheno$BMI
    #ifelse(bt_pheno$BMI < 10, "NA", bt_pheno$BMI)
  )
)
plot(density(na.omit(bt_pheno$BMI)), main="BMI (>40) outlier pruned")
polygon(density(na.omit(bt_pheno$BMI)), col = "coral")

BNphen <- bestNormalize::orderNorm(bt_pheno$BMI)
BNphen 
## orderNorm Transformation with 425 nonmissing obs and ties
##  - 419 unique values 
##  - Original quantiles:
##     0%    25%    50%    75%   100% 
## 11.818 14.134 15.311 17.526 34.666
bt_pheno$nBMI <- BNphen$x.t
plot(density(na.omit(bt_pheno$nBMI)), main="Normalized BMI") 
polygon(density(na.omit(bt_pheno$nBMI)), col = "lightblue")

# fit smooth spline for Age against BMI
bmi_pheno <- na.omit(bt_pheno[, which(names(bt_pheno) %in% c("FID","GENDER","AGE","BMI"))])

bmi_plot <- qplot(AGE, BMI, data = bmi_pheno, geom='smooth', span =0.5, color = GENDER) + theme_bw()
bmi_plot
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
summary(bt_pheno$DBP)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    20.0    58.0    65.0    65.3    73.0   109.0     210

5 Save new pheno to file

#head(bt_pheno[, -c(3:4)])

outf <- paste0(
  params$odir,
  "/",
  sub(".xlsx","", basename(params$data)),
  "_new_pheno.tsv"
)

write.table(
  bt_pheno,
  outf,
  col.names=T,
  row.names=F,
  quote=F,
  sep="\t"
)